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Abstract

The possibility of using the phase space formalism to establish a correspondence be-

tween the dynamical behaviour of squeezed states and optical or charged beams, propagating

through linear systems, has received a great deal of attention during the last years. In this

connection, it has been indicated how optical experiments may be conceived to measure the

Wigner rotation angle. In this paper we address the topic within the context of the paraxial

propagation of optical or charged beams and suggest a possible experiment for measuring

the Wigner angle using an electron beam passing through quadrupoles and drift sections.

The analogous optical system is also discussed.

1 Introduction

Lorentz group is the basic language of special relativity [1]. It has been recognized as a powerful

tool in many other fields of modern physics as well. Many dynamical symmetry groups, underlying

specific branches of physics, as quantum optics, classical and quantum mechanics, Hamiltonian

optics, are locally isomorphic to the group SO(2, 1) of Lorentz transformations in two-space and
one-time dimensions.

Actually, the (3 + 1)-dimensional Lorentz group S0(3, 1) is the full space-time symmetry

group. However, we seldom discuss Lorentz transformations in the three-dimensional coordinate

system, since computing for instance velocity additions and successive Lorentz boosts is quite

complicated, 4 x 4 matrices being involved. Restricting thereby the problem from S0(3, 1) to

S0(2, 1) may simplify significantly calculations.

Furthermore SO(2, 1) has both a physical and mathematical interest. It is indeed the lit-

tle group, which leaves a space-like four-momentum invariant. Accordingly, studying S0(2, 1)

amounts to studying free particles travelling faster than light (the so-called tachyons), which are

intrinsically interesting from a theoretical point of view.

Above all, the group SO(2, 1) gave rise to a great amount of interest, since, as already remarked,

it is locally isomorphic to other groups, as Sp(2), SU(1, 1), SL(2, C), and has therefore a very

rich mathematical and physical content. The isomorphism with the above quoted groups offers

many advantages from both analytical and theoretical point of view. In fact, it allows further

simplification in the calculations involving Lorentz transformations, the groups Sp(2), SU(1, 1),

SL(2, C) consisting of 2 × 2 matrices. In particular, the algebraic analogy with the symplectic
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group Sp(2) offers a further advantage, as Sp(2) consists of real matrices. Hence, it is possible

to visualize Lorentz transformations in terms of transformations in a two-dimensional geometry,

making a correspondence between Lorentz transformations in real space and linear canonical

transformations in phase--spac_ or, equivalently, between volume-preserving transformations and

area-preserving transformations.

In addition, as firstly recognized by Han, Kim and Noz [2], the quoted isomorphism allows

to conceive a kind of analog computer for testing the Lorentz group properties. In particular, as

is well known, instead of rotations, pure Lorentz transformations do not form a subgroup. As

a consequence, the product of two boosts along different directions is not a boost but a boost

preceded or followed by a rotation. The angle of rotation is known as the Wigner angle and

provides the kinematic basis for Thomas precession in atomic physics [1, 2].

Many suggestions have indeed proposed in order to perform optical experiments to observe the

optical analog of the Wigner angle [3, 4].

In this connection, the paper is devoted at suggesting a possible experiment for measuring the

Wigner angle within the context of electron beam transport [5]. The paraxial propagation of a

charged particle along a magnetic channel is indeed governed by the symplectic symmetry. It can

be therefore conceived an experiment involving electron beams for measuring the Wigner angle.

The formal analogy between the propagation of charged beams and that of light beams through

optical systems in the G aussian approximation suggests to discuss the topic in full generality.

However, the specific language used through the paper is that usually adopted in accelerator

physics, whilst the symbology is just that of ray--optics.

The paper is organized as follows. Sec. 2 is devoted to a preliminary analysis of the problem, in

order to introduce the formalism relevant to symplectic symmetry. In Sec. 3 the analogy between

linear canonical transformations and optical systems is developed, thus leading to a specific design

of the experiment for measuring the Wigner angle within the electron-beam optics, as illustrated

in Sec. 4. Concluding remarks are given in Sec. 5.

2 S0(2, 1)and Sp(2)

As remarked in ref. [6], the symplec$ic group, originally introduced by Weyl in 1938, plays a central

role in many branches of physics, as a consequence of that symplectic transformations preserve the

skew symmetric products, which frequently appear in physics. In particular, symplectic geometry

is the mathematical theory underlying Hamiltonian mechanics. It emerges especially in phase-

space picture. The phase-space of a mechanical system is indeed recognized as a symplectic
manifold and the time evolution of a conservative dynamical system is a one-parameter family of

symplectic diffeomorphisms, or, linear canonical transformations.

Phase space formalism is becoming the unifying language for both classical and quantum

mechanics.It is basic to the Hamiltonian formulation of classical mechanics. Within this context,

indeed, the evolution of a dynamical system is described by a number n of independent coordinate

variables and on the same number of canonically conjugate momenta. The cartesian space of these

2n coordinates is just the phase-space.

Correspondingly, phase space picture of quantum mechanics is becoming increasingly popular.

Although, the concept of phase--space is not compatible with quantum mechanics, _ and _ being

noncommuting operators, the Wigner phase-space representation allows to overcome this prob-
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lem, since in this representationboth the coordinate and momentum variables are c--numbers.

Accordingly, it is possible to perform phase-space canonical transformations as in the case of

classical mechanics, which correspond to unitary transformations in the SchrSdinger picture of

quantum mechanics.

Phase space concept appears therefore as the unifying context, where classical as well as

quantum mechanics can be naturally framed, thus suggesting the possibility to transfer concepts

and methods from quantum to classical mechanics and viceversa.

Furthermore, as discussed in ref. [2], phase-space picture provides the natural language for

quantum optics as well, offering a geometrical view to coherent and squeezed states as circles and

ellipses respectively. In this respect, taking advantages from the symmetry of the relevant Wigner

phase space distribution function it is possible to calculate expectation values and transition

probabilities for the above quoted states [2].

In the present paper, we are interested in the paraxial propagation of optical or charged-particle

beams through optical systems [7, 8]. We are thereby led to consider the harmonic oscillator-type
Hamiltonian

= 2{p2+ k(s)q2} , (1)
"1

H

with q and p being canonically conjugate variables. As noticed, the Hamiltonian (1) models the

paraxial propagation of electron beams as well as light beams through optical systems. The p2_

term describes the free propagation for both electron beams and light rays, the variable p being

understood as the particle--momentum and the ray reduced slope, respectively. On the other

hand, the q2-term accounts for the propagation through optical systems as quadrupoles or lens-

like medium, the corresponding strength being measured by the coefficient k(s). The coordinate

s is measured along the symmetry axis of the system, also assumed as the direction of the beam

propagation.

The basic tools of classical mechanics are the Poisson brackets and the canonical transforma-

tions. The latter can be derived from the former.

The properties of Poisson brackets, indeed, as the antisymmetry, the derivation property and

the Jacobi's identity, assure that Poisson brackets make any commutative ring of functions defined

on a domain X c R 2'_ into a Lie algebra. It is thereby possible to associate with any Hamiltonian

H the operator _g -- {H,...}, which for the one-degree of freedom writes as

_H -- 0H C_ (OH 0
Oq Op Op Oq " (2)

Accordingly, the dynamics ruled by (1) is naturally framed within the group structure generated

by the operators associated with the quadratic polynomials:

1 2 0

1 2 0

-2q ---* q op ' (3)

0 0

pq -
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Embeddingthe aboveoperatorsinto the following

1(0k, = 5 q_ - p '

1(0k2 = _ q_+p , (4)

it is easy to recognize the symplectic structure of the corresponding group, as displayed by the

commutation relations obeyed by the above introduced operators:

(5)[k,,k2l=k3, [k,,k_]=-k_, [k_,k,]=-k,.

As elements of Sp(2), the operators kl, k2, ks are amenable of the matrix representation

(8),(o 'o), ,(o ,) ,(, o,)K,=-_ 1 -2 1 0 ' K3=_ 0 -

Finally, let us say that the operators (4) are the generators of the canonical transformations

in phase-space, which will be analysed with some details in the next section, within the context

of the specific problem of charged beam motion in magnetic fields.

3 Linear canonical transformations and optical systems

Before analysing the specific role of the operators ki, i --- 1,2, 3 and discussing the optical analogs

of the associated canonical transformations, let us make some preliminary considerations in order

to visualize the phase-space canonical transformations within the specific context of electron-beam

transport physics.

As is well known, an invariant quadratic form

z = x_T(s)_ (7)

can be associated to any dynamics described by quadratic Hamiltonians in canonical coordinates

and momenta. In passing, it is worth stressing that within a quantum context the quadratic form :Z"

is reported as the Ermakov-Lewis invariant [9], the vector x containing obviously the position and

momentum operators, whilst in classical mechanics it is known as the Courant-Snyder invariant

[10], firstly introduced in the analysis of electron beam motion through magnetic channels. In the

above expression, the two component vector x - (q_ is acted by the real 2 x 2 matrix T, which
f %

- \ P /

furthermore is required to be symmetric and unimodular: det T = 1. Just to share the language

of accelerator physics, we refer to __Tas the Twiss matrix 1 and write it in the form

°)= _ _ (8)

1The quadratic form (7) can also be regarded as the transcription in phase space of the quantum invariant, the

vector x being formed by the expectation values of the position and momentum operators and the matrix T being

linked to the quantum covariance matrix.
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Figure 1: Phase-space ellipses for different values of the Twi_ parameters a,/3,-y.

The entries _,/3, -y usually named as Twiss parameters, play an important role in designing trans-
port channels.

The quadratic form (7) can be depicted in the phase space as an ellipse, whose size and

orientation are determined by the Twiss coefficients. The area of the ellipse, which is just the

value of the invariant 2", is usually denoted in accelerator physics as 2" -- _r6, e being referred to as

the beam emittance. It plays a crucial role in characterizing the quality and the dynamics of the

e-beam. In a single particle analysis, (_,/3 and -y define the particle trajectory, as in an ensemble

analysis they define the second order momentum of the phase space distribution function, thus

providing information on its extent and maximum localization. Explicitly,

_ = a_-- (p2)_ (p)2,

- (q? (9)_ _ = O'qq

2 _ _((qp)_ (q)(p)) ,

the averages being understood on the distribution function. Accordingly, the emittance can be

given the further meaning:

e2 2 2 2 (10)= 6rqq6r1:rp -- O'qp .

According to the above considerations,the dynamics of charged beams passing through transport

channels naturally leads to a visualization of the problem in terms of circles and ellipses in the

phase-space, which on the other hand have been recognized as useful pictures for the coherent

and squeezed states of quantum optics as well (Fig. 1).

Acting on the vector _x amounts to acting on the phase-space ellipse and correspondingly on

the Twiss parameters. To be more precise, let us say that a linear canonical transformation U,

represented by the matrix U = ( A D ), change the Twiss parameters as [8]

_' = -2AB A 2 B 2 (11)

"T' -2DC C 2 0 2

After these introductory remarks, let us consider the specific effect of the transformations gener-

ated by the operators N_, i = 1,2, 3 and recognize the corresponding optical systems.

Using the matrix representation (6), we immediately get

e_rl/2 , (12)
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Figure 2: Phase-space canonical transformation (a) and optical system (b) corresponding to the

operator e"_.

which represents an elongation in the q-direction and correspondingly a stretching in the p-

direction, turning for instance a circle into an ellipse, as sketched in Fig. 2a.

It is needless to say that the transformation (12) preserves phase--space area, as a consequence

of that Sp(2) matrices leave invariant the cross products, naturally associated with areas.

In the optics of electron or light beams the transformation described by S(r/, 0) is realized by

means of telescopic systems, consisting of two thin lenses appropriately combined, according to

the scheme shown in Fig. 2b. In this regard, let us recall that the symbology for optics of electron

beams and light beams is the same. Hence, thin lenses in ray optics correspond to quadrupoles in

electron-beam optics.

The parameter M, which is just equal to minus the ratio of the foci of the two lenses, is

reported in optics as the magnification of the system. It produces indeed an image magnification

and a ray-angle demagnification.
As to the operator K1, it is easy to obtain the associated transformation as

(' cos 4_/2 - sin _b/2 )e-4,k' -= R(ff) = \sin_b/2 cosqV2 ' (13)
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Figure 3: Phase-space canonical transformation (a) and optical system (b) corresponding to the

operator e -$kz .

immediately recognized to describe the rotation around the origin in the phase space by the angle

¢/2, as further confirmed by the transformation law (11) for the Twiss parameters according to

which the associated ellipse rotates in the counterclockwise direction by ¢/2.

Since any group elements can be appropriately factorized, the canonical transformation cor-

responding to the matrix R(¢) can be realized by means of an appropriate sequence of the basic

optical elements, that is thin lenses, drift sections and telescopic systems, which however are just
a combination of the first two.

Accordingly, the optical system corresponding to a rotation in phase-space can be realized by

means of the following sequence (Fig. 3):

1. telescopic system with magnification M = cos ¢/2

1 sin ¢2. drift section of length d = -_

3. thin lens of focus f = - cot ¢/2

In this connection, it is worth stressing that the above scheme is only one of the possible ones,

which can be obtained changing the ordering in the operator factorization, thus allowing to satisfy

specific requests on the parameters of the optical components.

Finally, the operator e '7K2, which can be represented by the matrix:

e,Tk_ = S(r/,90o)-= /'coshr//2 sinh_/2)\sinhr//2 cosh77/2 '
(14)
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Figure 4: Optical analog of the squeeze SO?, @).

is easily identified according to the transformation law (11) as producing a squeeze in the direction

making an angle of 45 ° with the q-axis.

The optical analog can be realized for instance by the same sequence as before, the relevant

parame'Gers being now M = cosh 7]/2, d = sinh 7/2, f = tanh -1 77/2.

Finally, let us discuss the squeeze S(TI, ¢) in the direction making an angle ¢/2 with respect to

the q-axis. Since it can be obtained combining rotations and squeeze along the q-axis, as formally

expressed by the composition

¢) = 0)R(-¢), (15)

it is easy to get the well known matrix representation [2]

cosh r]/2 + cos ¢ sinh 7]/2 sin ¢ sinh _?/2 )S07, ¢) = sin ¢ sinh _?/2 cosh 7]/2 - cos ¢ sinh T]/2 "
(16)

According to the above discussion, a possible optical configuration can be realized by a telescopic

system, preceded and followed by the same sequence of thin lens-drift section, symmetrically

disposed. It is worth stressing that the magnification of the telescopic system is determined by

the entity _? of the squeeze as the parameters of the optical system drift section-thin lens are

determined by the squeeze direction ¢ (Fig. 4). The quantities _], ¢ are usually combined into the

squeeze parameter _ - Tie_, so that 7? and ¢ can be regarded as the modulus and the phase of the

squeeze parameter _'.

In conclusion, we have stated a correspondence between the linear canonical transformations in

phase--space, as squeezes and rotations, and optical systems, which can be conceptually conceived

as realizing such transformations, acting effectively on electron or light beams.
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4 Electron-beam transport channels and Wigner angle

The correspondence between linear canonical transformations and Lorentz transformations has

been already recognized [2]. Boosts correspond indeed to squeezes in phase-space and rotations

in real space to rotations in phase-space and rotations in real space to rotations in phase-space.

Similarly, as the product of two boosts along different directions is not a boost, but a boost

preceded or followed by a rotation, so the product of two squeeze along different directions does

not result into a single squeeze, but into a squeeze and a rotation. It can be verified that

S(A,¢)S(_, 0)= S(_,O)R(w). (17)

The parameters _, 0, specifying the entity and the direction of the resulting squeeze, and the

angle w, referred to as the Wigner angle, are determined by A, ¢, r/according to the well-known
formulae:

cosh_ =

tan0 =

W
tan-- =

2

cosh r/cosh A + cos ¢ sinh A sinh r/,

sin ¢[sinh A + cos ¢ tanh _/(cosh A - 1)]

cos ¢ sinh A + tanh _/[1 + cos 2 ¢(cosh A - 1)] '

sin O sinh _ sinh

cosh __ cosh _ + cos ¢ sinh -_ sinh _2 "

(lS)

Within the context of the optical analogy, developed in the previous section, the above relations

can be recast in terms of the parameters of the optical systems corresponding to S(A, ¢) and
S(r/, 0), according to

4M_M_ (M_+I)(MI+I)+ 1--- (M,_-I)(M/-1) ,

(M_ - 1)(M¢ + 1) - (1 - ._) (M# - 1)(M_- 1) 2

tan20 ---- 2d(M _ _ 1)(M,_ + 1)(1- _) + (Me - 1)[2M_ + (1- _)(M_ - 1)2] ' (19)

2d (M_- 1)(M_- 1)

(M_ -I- 1)(M_ + 1) -t- (1 - _) (M_ - 1)(M_ - 1) '

tan-- =
2

where M, specifies the magnification of the optical system S(r/, 0), whilst M_, d and f denote the

parameters of the system S(A, ¢) according to the scheme of Fig. 4.

Accordingly, one can design an appropriate sequence of quadrupoles and drift sections to

perform the transformation represented by the product of three squeeze:

o), (20)
with _, 0 given according to (19).

As stated in (17), such a transformation does not leave unchanged the Twiss parameters of

the beam, which indeed change as in a rotation of the angle w/2. Explicitly,

= al - 1031-'h)sinw ,C_2

O3 _J

= alsinw+/31cos 2_+Tzsin 2_,

03 2 _

72 -- alsinw+fllsin 2_+_'leos _.

(21)
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It is evident that if al = 0 and 71 = _1 = 1, that is depicted in phase-space by a circle of

unitary radius, the rotation does not have any effect, since a2 = 0 and 72 = _2 = 1 as well. As a

consequence, a beam having different variance in the q and p directions should be used; in other

words, sharing the language of quantum optics, a squeezed beam should be used to produce a

rotation of the beam ellipse.

In that case, indeed, the initial ellipse will rotate in the phase-space just by the angle w/2.

Measuring then the Twiss parameters of the electron beam before and after being acted by the

optical system, performing the transformation (20), it is possible to infer the Wigner angle, w, for

which the following link with the Twiss parameters can be deduced:

=  2(Z, - 7,) -  1(Z2 - 72)
tan w _ _ ___')_I 71)"{"2ala2

(22)

5 Concluding remarks

The consideration developed in the previous sections are basically grounded on the algebraic

analogy between the S0(2, 1) Lorentz group and the symplectic group Sp(2), which is basic to

the Hamiltonian dynamics. Exploiting this analogy, it is possible to conceive and design an optical

system for electron beams, which allows to get a measure of the Wigner angle by detecting the

variations occurred in the electron-beam Twiss parameters as a result of the motion through the

magnetic channel. In this connection, the two-slits method [11] may offer an appropriate tool to

visualize the rotation of the beam ellipse and thus to measure the Wigner angle. However, the

measure is strongly limited by space-charge effects and transverse coupling, induced by sextupolar

contributions to the quadrupole magnetic field.

The discussion has been put forward in full generality comprehending also light beams, whose

paraxial propagation through optical systems is governed by the symplectic symmetry as well. An

experiment using light beams can be conceptually conceived, but its realization is rather difficult,

since the measure of the corresponding Twiss parameters, which in the specifically optical context,

can be understood as linked to the beam spot-size and divergence, is limited by diffraction effects.

In conclusion, let us stress the relevance of the above results, according to which an analog

computer for the Lorentz group can be recognized within the purely classical context of electron

beam transport or optical ray propagation.
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